Uses of Interface
org.apache.commons.math4.legacy.fitting.leastsquares.MultivariateJacobianFunction
-
Packages that use MultivariateJacobianFunction Package Description org.apache.commons.math4.legacy.fitting.leastsquares This package provides algorithms that minimize the residuals between observations and model values. -
-
Uses of MultivariateJacobianFunction in org.apache.commons.math4.legacy.fitting.leastsquares
Subinterfaces of MultivariateJacobianFunction in org.apache.commons.math4.legacy.fitting.leastsquares Modifier and Type Interface Description interfaceValueAndJacobianFunctionA interface for functions that compute a vector of values and can compute their derivatives (Jacobian).Classes in org.apache.commons.math4.legacy.fitting.leastsquares that implement MultivariateJacobianFunction Modifier and Type Class Description classDifferentiatorVectorMultivariateJacobianFunctionA MultivariateJacobianFunction (a thing that requires a derivative) combined with the thing that can find derivatives.Methods in org.apache.commons.math4.legacy.fitting.leastsquares that return MultivariateJacobianFunction Modifier and Type Method Description static MultivariateJacobianFunctionLeastSquaresFactory. model(MultivariateVectorFunction value, MultivariateMatrixFunction jacobian)Combine aMultivariateVectorFunctionwith aMultivariateMatrixFunctionto produce aMultivariateJacobianFunction.Methods in org.apache.commons.math4.legacy.fitting.leastsquares with parameters of type MultivariateJacobianFunction Modifier and Type Method Description static LeastSquaresProblemLeastSquaresFactory. create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations)Create aLeastSquaresProblemfrom the given elements.static LeastSquaresProblemLeastSquaresFactory. create(MultivariateJacobianFunction model, RealVector observed, RealVector start, RealMatrix weight, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations, boolean lazyEvaluation, ParameterValidator paramValidator)Create aLeastSquaresProblemfrom the given elements.static LeastSquaresProblemLeastSquaresFactory. create(MultivariateJacobianFunction model, RealVector observed, RealVector start, ConvergenceChecker<LeastSquaresProblem.Evaluation> checker, int maxEvaluations, int maxIterations)Create aLeastSquaresProblemfrom the given elements.LeastSquaresBuilderLeastSquaresBuilder. model(MultivariateJacobianFunction newModel)Configure the model function.
-